3.3.15 \(\int \sqrt {\sec (c+d x)} (a+a \sec (c+d x))^2 (A+C \sec ^2(c+d x)) \, dx\) [215]

3.3.15.1 Optimal result
3.3.15.2 Mathematica [C] (warning: unable to verify)
3.3.15.3 Rubi [A] (verified)
3.3.15.4 Maple [B] (verified)
3.3.15.5 Fricas [C] (verification not implemented)
3.3.15.6 Sympy [F(-1)]
3.3.15.7 Maxima [F]
3.3.15.8 Giac [F]
3.3.15.9 Mupad [F(-1)]

3.3.15.1 Optimal result

Integrand size = 35, antiderivative size = 237 \[ \int \sqrt {\sec (c+d x)} (a+a \sec (c+d x))^2 \left (A+C \sec ^2(c+d x)\right ) \, dx=-\frac {4 a^2 (5 A+3 C) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 d}+\frac {8 a^2 (7 A+3 C) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{21 d}+\frac {4 a^2 (5 A+3 C) \sqrt {\sec (c+d x)} \sin (c+d x)}{5 d}+\frac {2 a^2 (35 A+33 C) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{105 d}+\frac {2 C \sec ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^2 \sin (c+d x)}{7 d}+\frac {8 C \sec ^{\frac {3}{2}}(c+d x) \left (a^2+a^2 \sec (c+d x)\right ) \sin (c+d x)}{35 d} \]

output
2/105*a^2*(35*A+33*C)*sec(d*x+c)^(3/2)*sin(d*x+c)/d+2/7*C*sec(d*x+c)^(3/2) 
*(a+a*sec(d*x+c))^2*sin(d*x+c)/d+8/35*C*sec(d*x+c)^(3/2)*(a^2+a^2*sec(d*x+ 
c))*sin(d*x+c)/d+4/5*a^2*(5*A+3*C)*sin(d*x+c)*sec(d*x+c)^(1/2)/d-4/5*a^2*( 
5*A+3*C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2 
*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d+8/21*a^2*(7*A+3*C 
)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/ 
2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/d
 
3.3.15.2 Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 8.99 (sec) , antiderivative size = 436, normalized size of antiderivative = 1.84 \[ \int \sqrt {\sec (c+d x)} (a+a \sec (c+d x))^2 \left (A+C \sec ^2(c+d x)\right ) \, dx=\frac {a^2 e^{-i d x} \cos ^4(c+d x) \csc (c) \sec ^4\left (\frac {1}{2} (c+d x)\right ) (1+\sec (c+d x))^2 \left (A+C \sec ^2(c+d x)\right ) \left (7 \sqrt {2} (5 A+3 C) e^{2 i d x} \left (-1+e^{2 i c}\right ) \sqrt {\frac {e^{i (c+d x)}}{1+e^{2 i (c+d x)}}} \sqrt {1+e^{2 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},-e^{2 i (c+d x)}\right )-\frac {e^{-i (c-d x)} \left (-1+e^{2 i c}\right ) \left (35 A \left (1+e^{2 i (c+d x)}\right )^2 \left (-1+6 e^{i (c+d x)}+e^{2 i (c+d x)}+6 e^{3 i (c+d x)}\right )+6 C \left (-10+7 e^{i (c+d x)}-20 e^{2 i (c+d x)}+63 e^{3 i (c+d x)}+20 e^{4 i (c+d x)}+77 e^{5 i (c+d x)}+10 e^{6 i (c+d x)}+21 e^{7 i (c+d x)}\right )\right ) \sqrt {\sec (c+d x)}}{2 \left (1+e^{2 i (c+d x)}\right )^3}+20 (7 A+3 C) e^{i d x} \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)} \sin (c)\right )}{105 d (A+2 C+A \cos (2 (c+d x)))} \]

input
Integrate[Sqrt[Sec[c + d*x]]*(a + a*Sec[c + d*x])^2*(A + C*Sec[c + d*x]^2) 
,x]
 
output
(a^2*Cos[c + d*x]^4*Csc[c]*Sec[(c + d*x)/2]^4*(1 + Sec[c + d*x])^2*(A + C* 
Sec[c + d*x]^2)*(7*Sqrt[2]*(5*A + 3*C)*E^((2*I)*d*x)*(-1 + E^((2*I)*c))*Sq 
rt[E^(I*(c + d*x))/(1 + E^((2*I)*(c + d*x)))]*Sqrt[1 + E^((2*I)*(c + d*x)) 
]*Hypergeometric2F1[1/2, 3/4, 7/4, -E^((2*I)*(c + d*x))] - ((-1 + E^((2*I) 
*c))*(35*A*(1 + E^((2*I)*(c + d*x)))^2*(-1 + 6*E^(I*(c + d*x)) + E^((2*I)* 
(c + d*x)) + 6*E^((3*I)*(c + d*x))) + 6*C*(-10 + 7*E^(I*(c + d*x)) - 20*E^ 
((2*I)*(c + d*x)) + 63*E^((3*I)*(c + d*x)) + 20*E^((4*I)*(c + d*x)) + 77*E 
^((5*I)*(c + d*x)) + 10*E^((6*I)*(c + d*x)) + 21*E^((7*I)*(c + d*x))))*Sqr 
t[Sec[c + d*x]])/(2*E^(I*(c - d*x))*(1 + E^((2*I)*(c + d*x)))^3) + 20*(7*A 
 + 3*C)*E^(I*d*x)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c 
+ d*x]]*Sin[c]))/(105*d*E^(I*d*x)*(A + 2*C + A*Cos[2*(c + d*x)]))
 
3.3.15.3 Rubi [A] (verified)

Time = 1.34 (sec) , antiderivative size = 242, normalized size of antiderivative = 1.02, number of steps used = 17, number of rules used = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.486, Rules used = {3042, 4577, 27, 3042, 4506, 27, 3042, 4485, 3042, 4274, 3042, 4255, 3042, 4258, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)^2 \left (A+C \sec ^2(c+d x)\right ) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^2 \left (A+C \csc \left (c+d x+\frac {\pi }{2}\right )^2\right )dx\)

\(\Big \downarrow \) 4577

\(\displaystyle \frac {2 \int \frac {1}{2} \sqrt {\sec (c+d x)} (\sec (c+d x) a+a)^2 (a (7 A+C)+4 a C \sec (c+d x))dx}{7 a}+\frac {2 C \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x) (a \sec (c+d x)+a)^2}{7 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \sqrt {\sec (c+d x)} (\sec (c+d x) a+a)^2 (a (7 A+C)+4 a C \sec (c+d x))dx}{7 a}+\frac {2 C \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x) (a \sec (c+d x)+a)^2}{7 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^2 \left (a (7 A+C)+4 a C \csc \left (c+d x+\frac {\pi }{2}\right )\right )dx}{7 a}+\frac {2 C \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x) (a \sec (c+d x)+a)^2}{7 d}\)

\(\Big \downarrow \) 4506

\(\displaystyle \frac {\frac {2}{5} \int \frac {1}{2} \sqrt {\sec (c+d x)} (\sec (c+d x) a+a) \left ((35 A+9 C) a^2+(35 A+33 C) \sec (c+d x) a^2\right )dx+\frac {8 C \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x) \left (a^3 \sec (c+d x)+a^3\right )}{5 d}}{7 a}+\frac {2 C \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x) (a \sec (c+d x)+a)^2}{7 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {1}{5} \int \sqrt {\sec (c+d x)} (\sec (c+d x) a+a) \left ((35 A+9 C) a^2+(35 A+33 C) \sec (c+d x) a^2\right )dx+\frac {8 C \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x) \left (a^3 \sec (c+d x)+a^3\right )}{5 d}}{7 a}+\frac {2 C \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x) (a \sec (c+d x)+a)^2}{7 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{5} \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right ) \left ((35 A+9 C) a^2+(35 A+33 C) \csc \left (c+d x+\frac {\pi }{2}\right ) a^2\right )dx+\frac {8 C \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x) \left (a^3 \sec (c+d x)+a^3\right )}{5 d}}{7 a}+\frac {2 C \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x) (a \sec (c+d x)+a)^2}{7 d}\)

\(\Big \downarrow \) 4485

\(\displaystyle \frac {\frac {1}{5} \left (\frac {2}{3} \int \sqrt {\sec (c+d x)} \left (10 (7 A+3 C) a^3+21 (5 A+3 C) \sec (c+d x) a^3\right )dx+\frac {2 a^3 (35 A+33 C) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}\right )+\frac {8 C \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x) \left (a^3 \sec (c+d x)+a^3\right )}{5 d}}{7 a}+\frac {2 C \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x) (a \sec (c+d x)+a)^2}{7 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{5} \left (\frac {2}{3} \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \left (10 (7 A+3 C) a^3+21 (5 A+3 C) \csc \left (c+d x+\frac {\pi }{2}\right ) a^3\right )dx+\frac {2 a^3 (35 A+33 C) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}\right )+\frac {8 C \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x) \left (a^3 \sec (c+d x)+a^3\right )}{5 d}}{7 a}+\frac {2 C \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x) (a \sec (c+d x)+a)^2}{7 d}\)

\(\Big \downarrow \) 4274

\(\displaystyle \frac {\frac {1}{5} \left (\frac {2}{3} \left (21 a^3 (5 A+3 C) \int \sec ^{\frac {3}{2}}(c+d x)dx+10 a^3 (7 A+3 C) \int \sqrt {\sec (c+d x)}dx\right )+\frac {2 a^3 (35 A+33 C) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}\right )+\frac {8 C \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x) \left (a^3 \sec (c+d x)+a^3\right )}{5 d}}{7 a}+\frac {2 C \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x) (a \sec (c+d x)+a)^2}{7 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{5} \left (\frac {2}{3} \left (10 a^3 (7 A+3 C) \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}dx+21 a^3 (5 A+3 C) \int \csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}dx\right )+\frac {2 a^3 (35 A+33 C) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}\right )+\frac {8 C \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x) \left (a^3 \sec (c+d x)+a^3\right )}{5 d}}{7 a}+\frac {2 C \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x) (a \sec (c+d x)+a)^2}{7 d}\)

\(\Big \downarrow \) 4255

\(\displaystyle \frac {\frac {1}{5} \left (\frac {2}{3} \left (10 a^3 (7 A+3 C) \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}dx+21 a^3 (5 A+3 C) \left (\frac {2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d}-\int \frac {1}{\sqrt {\sec (c+d x)}}dx\right )\right )+\frac {2 a^3 (35 A+33 C) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}\right )+\frac {8 C \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x) \left (a^3 \sec (c+d x)+a^3\right )}{5 d}}{7 a}+\frac {2 C \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x) (a \sec (c+d x)+a)^2}{7 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{5} \left (\frac {2}{3} \left (10 a^3 (7 A+3 C) \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}dx+21 a^3 (5 A+3 C) \left (\frac {2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d}-\int \frac {1}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx\right )\right )+\frac {2 a^3 (35 A+33 C) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}\right )+\frac {8 C \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x) \left (a^3 \sec (c+d x)+a^3\right )}{5 d}}{7 a}+\frac {2 C \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x) (a \sec (c+d x)+a)^2}{7 d}\)

\(\Big \downarrow \) 4258

\(\displaystyle \frac {\frac {1}{5} \left (\frac {2}{3} \left (10 a^3 (7 A+3 C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)}}dx+21 a^3 (5 A+3 C) \left (\frac {2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d}-\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\cos (c+d x)}dx\right )\right )+\frac {2 a^3 (35 A+33 C) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}\right )+\frac {8 C \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x) \left (a^3 \sec (c+d x)+a^3\right )}{5 d}}{7 a}+\frac {2 C \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x) (a \sec (c+d x)+a)^2}{7 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {1}{5} \left (\frac {2}{3} \left (10 a^3 (7 A+3 C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+21 a^3 (5 A+3 C) \left (\frac {2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d}-\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx\right )\right )+\frac {2 a^3 (35 A+33 C) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}\right )+\frac {8 C \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x) \left (a^3 \sec (c+d x)+a^3\right )}{5 d}}{7 a}+\frac {2 C \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x) (a \sec (c+d x)+a)^2}{7 d}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {\frac {1}{5} \left (\frac {2}{3} \left (10 a^3 (7 A+3 C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+21 a^3 (5 A+3 C) \left (\frac {2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d}-\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )\right )+\frac {2 a^3 (35 A+33 C) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}\right )+\frac {8 C \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x) \left (a^3 \sec (c+d x)+a^3\right )}{5 d}}{7 a}+\frac {2 C \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x) (a \sec (c+d x)+a)^2}{7 d}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {\frac {1}{5} \left (\frac {2 a^3 (35 A+33 C) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 d}+\frac {2}{3} \left (\frac {20 a^3 (7 A+3 C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}+21 a^3 (5 A+3 C) \left (\frac {2 \sin (c+d x) \sqrt {\sec (c+d x)}}{d}-\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )\right )\right )+\frac {8 C \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x) \left (a^3 \sec (c+d x)+a^3\right )}{5 d}}{7 a}+\frac {2 C \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x) (a \sec (c+d x)+a)^2}{7 d}\)

input
Int[Sqrt[Sec[c + d*x]]*(a + a*Sec[c + d*x])^2*(A + C*Sec[c + d*x]^2),x]
 
output
(2*C*Sec[c + d*x]^(3/2)*(a + a*Sec[c + d*x])^2*Sin[c + d*x])/(7*d) + ((8*C 
*Sec[c + d*x]^(3/2)*(a^3 + a^3*Sec[c + d*x])*Sin[c + d*x])/(5*d) + ((2*a^3 
*(35*A + 33*C)*Sec[c + d*x]^(3/2)*Sin[c + d*x])/(3*d) + (2*((20*a^3*(7*A + 
 3*C)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/d + 
 21*a^3*(5*A + 3*C)*((-2*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt 
[Sec[c + d*x]])/d + (2*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/d)))/3)/5)/(7*a)
 

3.3.15.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 4255
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d* 
x]*((b*Csc[c + d*x])^(n - 1)/(d*(n - 1))), x] + Simp[b^2*((n - 2)/(n - 1)) 
  Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] 
&& IntegerQ[2*n]
 

rule 4258
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x] 
)^n*Sin[c + d*x]^n   Int[1/Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && 
 EqQ[n^2, 1/4]
 

rule 4274
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
(a_)), x_Symbol] :> Simp[a   Int[(d*Csc[e + f*x])^n, x], x] + Simp[b/d   In 
t[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]
 

rule 4485
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
(a_))*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[(-b)*B*Cot[ 
e + f*x]*((d*Csc[e + f*x])^n/(f*(n + 1))), x] + Simp[1/(n + 1)   Int[(d*Csc 
[e + f*x])^n*Simp[A*a*(n + 1) + B*b*n + (A*b + B*a)*(n + 1)*Csc[e + f*x], x 
], x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] &&  !LeQ[ 
n, -1]
 

rule 4506
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[(-b)*B* 
Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 1)*((d*Csc[e + f*x])^n/(f*(m + n))), 
 x] + Simp[1/(d*(m + n))   Int[(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x] 
)^n*Simp[a*A*d*(m + n) + B*(b*d*n) + (A*b*d*(m + n) + a*B*d*(2*m + n - 1))* 
Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] && NeQ[A*b - 
 a*B, 0] && EqQ[a^2 - b^2, 0] && GtQ[m, 1/2] &&  !LtQ[n, -1]
 

rule 4577
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_. 
))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-C) 
*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(f*(m + n + 1))), 
x] + Simp[1/(b*(m + n + 1))   Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n 
*Simp[A*b*(m + n + 1) + b*C*n + a*C*m*Csc[e + f*x], x], x], x] /; FreeQ[{a, 
 b, d, e, f, A, C, m, n}, x] && EqQ[a^2 - b^2, 0] &&  !LtQ[m, -2^(-1)] && 
!LtQ[n, -2^(-1)] && NeQ[m + n + 1, 0]
 
3.3.15.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(891\) vs. \(2(261)=522\).

Time = 3.76 (sec) , antiderivative size = 892, normalized size of antiderivative = 3.76

method result size
default \(\text {Expression too large to display}\) \(892\)
parts \(\text {Expression too large to display}\) \(1153\)

input
int((a+a*sec(d*x+c))^2*(A+C*sec(d*x+c)^2)*sec(d*x+c)^(1/2),x,method=_RETUR 
NVERBOSE)
 
output
-a^2*(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*A*(sin(1 
/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1 
/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+ 
2*C*(-1/56*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^ 
2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^4-5/42*cos(1/2*d*x+1/2*c)*(-2*sin(1/2* 
d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^2+5/21 
*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/ 
2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^ 
(1/2)))+4*A/sin(1/2*d*x+1/2*c)^2/(2*sin(1/2*d*x+1/2*c)^2-1)*(-2*sin(1/2*d* 
x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1 
/2*c)^2-(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)) 
*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2))+4/5*C/sin(1/2*d*x+1/2*c)^2/(8*sin(1/2*d 
*x+1/2*c)^6-12*sin(1/2*d*x+1/2*c)^4+6*sin(1/2*d*x+1/2*c)^2-1)*(24*sin(1/2* 
d*x+1/2*c)^6*cos(1/2*d*x+1/2*c)-12*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE( 
cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*sin(1/2*d*x+1 
/2*c)^4-24*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4+12*(sin(1/2*d*x+1/2*c)^ 
2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^ 
(1/2)*sin(1/2*d*x+1/2*c)^2+8*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2-3*(si 
n(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2 
*d*x+1/2*c)^2-1)^(1/2))*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^...
 
3.3.15.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.12 (sec) , antiderivative size = 259, normalized size of antiderivative = 1.09 \[ \int \sqrt {\sec (c+d x)} (a+a \sec (c+d x))^2 \left (A+C \sec ^2(c+d x)\right ) \, dx=-\frac {2 \, {\left (10 i \, \sqrt {2} {\left (7 \, A + 3 \, C\right )} a^{2} \cos \left (d x + c\right )^{3} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 10 i \, \sqrt {2} {\left (7 \, A + 3 \, C\right )} a^{2} \cos \left (d x + c\right )^{3} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 21 i \, \sqrt {2} {\left (5 \, A + 3 \, C\right )} a^{2} \cos \left (d x + c\right )^{3} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 21 i \, \sqrt {2} {\left (5 \, A + 3 \, C\right )} a^{2} \cos \left (d x + c\right )^{3} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - \frac {{\left (42 \, {\left (5 \, A + 3 \, C\right )} a^{2} \cos \left (d x + c\right )^{3} + 5 \, {\left (7 \, A + 12 \, C\right )} a^{2} \cos \left (d x + c\right )^{2} + 42 \, C a^{2} \cos \left (d x + c\right ) + 15 \, C a^{2}\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}\right )}}{105 \, d \cos \left (d x + c\right )^{3}} \]

input
integrate((a+a*sec(d*x+c))^2*(A+C*sec(d*x+c)^2)*sec(d*x+c)^(1/2),x, algori 
thm="fricas")
 
output
-2/105*(10*I*sqrt(2)*(7*A + 3*C)*a^2*cos(d*x + c)^3*weierstrassPInverse(-4 
, 0, cos(d*x + c) + I*sin(d*x + c)) - 10*I*sqrt(2)*(7*A + 3*C)*a^2*cos(d*x 
 + c)^3*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + 21*I*s 
qrt(2)*(5*A + 3*C)*a^2*cos(d*x + c)^3*weierstrassZeta(-4, 0, weierstrassPI 
nverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) - 21*I*sqrt(2)*(5*A + 3*C)*a 
^2*cos(d*x + c)^3*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d* 
x + c) - I*sin(d*x + c))) - (42*(5*A + 3*C)*a^2*cos(d*x + c)^3 + 5*(7*A + 
12*C)*a^2*cos(d*x + c)^2 + 42*C*a^2*cos(d*x + c) + 15*C*a^2)*sin(d*x + c)/ 
sqrt(cos(d*x + c)))/(d*cos(d*x + c)^3)
 
3.3.15.6 Sympy [F(-1)]

Timed out. \[ \int \sqrt {\sec (c+d x)} (a+a \sec (c+d x))^2 \left (A+C \sec ^2(c+d x)\right ) \, dx=\text {Timed out} \]

input
integrate((a+a*sec(d*x+c))**2*(A+C*sec(d*x+c)**2)*sec(d*x+c)**(1/2),x)
 
output
Timed out
 
3.3.15.7 Maxima [F]

\[ \int \sqrt {\sec (c+d x)} (a+a \sec (c+d x))^2 \left (A+C \sec ^2(c+d x)\right ) \, dx=\int { {\left (C \sec \left (d x + c\right )^{2} + A\right )} {\left (a \sec \left (d x + c\right ) + a\right )}^{2} \sqrt {\sec \left (d x + c\right )} \,d x } \]

input
integrate((a+a*sec(d*x+c))^2*(A+C*sec(d*x+c)^2)*sec(d*x+c)^(1/2),x, algori 
thm="maxima")
 
output
integrate((C*sec(d*x + c)^2 + A)*(a*sec(d*x + c) + a)^2*sqrt(sec(d*x + c)) 
, x)
 
3.3.15.8 Giac [F]

\[ \int \sqrt {\sec (c+d x)} (a+a \sec (c+d x))^2 \left (A+C \sec ^2(c+d x)\right ) \, dx=\int { {\left (C \sec \left (d x + c\right )^{2} + A\right )} {\left (a \sec \left (d x + c\right ) + a\right )}^{2} \sqrt {\sec \left (d x + c\right )} \,d x } \]

input
integrate((a+a*sec(d*x+c))^2*(A+C*sec(d*x+c)^2)*sec(d*x+c)^(1/2),x, algori 
thm="giac")
 
output
integrate((C*sec(d*x + c)^2 + A)*(a*sec(d*x + c) + a)^2*sqrt(sec(d*x + c)) 
, x)
 
3.3.15.9 Mupad [F(-1)]

Timed out. \[ \int \sqrt {\sec (c+d x)} (a+a \sec (c+d x))^2 \left (A+C \sec ^2(c+d x)\right ) \, dx=\int \left (A+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right )\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^2\,\sqrt {\frac {1}{\cos \left (c+d\,x\right )}} \,d x \]

input
int((A + C/cos(c + d*x)^2)*(a + a/cos(c + d*x))^2*(1/cos(c + d*x))^(1/2),x 
)
 
output
int((A + C/cos(c + d*x)^2)*(a + a/cos(c + d*x))^2*(1/cos(c + d*x))^(1/2), 
x)